Source code for src.train.train

from src.train.utils.common import get_logger, cp_projects, save_model
from src.train.utils.dist_utils import dist_tqdm, dist_print
from src.train.utils.factory import get_optimizer, get_scheduler, get_metric_dict, get_loss_dict
from src.common.config import global_config

import torch, os, datetime

from src.common.model.model import parsingNet
from src.train.data.dataloader import get_train_loader

from src.common.config.global_config import adv_cfg
from src.train.utils.metrics import update_metrics, reset_metrics


import time


[docs]def inference(net, data_label, use_aux): if use_aux: img, cls_label, seg_label = data_label img, cls_label, seg_label = img.cuda(), cls_label.long().cuda(), seg_label.long().cuda() cls_out, seg_out = net(img) return {'cls_out': cls_out, 'cls_label': cls_label, 'seg_out': seg_out, 'seg_label': seg_label} else: img, cls_label = data_label img, cls_label = img.cuda(), cls_label.long().cuda() cls_out = net(img) return {'cls_out': cls_out, 'cls_label': cls_label}
[docs]def resolve_val_data(results, use_aux): results['cls_out'] = torch.argmax(results['cls_out'], dim=1) if use_aux: results['seg_out'] = torch.argmax(results['seg_out'], dim=1) return results
[docs]def calc_loss(loss_dict, results, logger, global_step): loss = 0 for i in range(len(loss_dict['name'])): data_src = loss_dict['data_src'][i] datas = [results[src] for src in data_src] loss_cur = loss_dict['op'][i](*datas) if global_step % 20 == 0: logger.add_scalar('loss/' + loss_dict['name'][i], loss_cur, global_step) loss += loss_cur * loss_dict['weight'][i] return loss
[docs]def train(net, data_loader, loss_dict, optimizer, scheduler, logger, epoch, metric_dict, use_aux): net.train() progress_bar = dist_tqdm(data_loader) t_data_0 = time.time() for b_idx, data_label in enumerate(progress_bar): t_data_1 = time.time() reset_metrics(metric_dict) global_step = epoch * len(data_loader) + b_idx t_net_0 = time.time() results = inference(net, data_label, use_aux) loss = calc_loss(loss_dict, results, logger, global_step) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step(global_step) t_net_1 = time.time() results = resolve_val_data(results, use_aux) update_metrics(metric_dict, results) if global_step % 20 == 0: for me_name, me_op in zip(metric_dict['name'], metric_dict['op']): logger.add_scalar('metric/' + me_name, me_op.get(), global_step=global_step) logger.add_scalar('meta/lr', optimizer.param_groups[0]['lr'], global_step=global_step) if hasattr(progress_bar, 'set_postfix'): kwargs = {me_name: '%.3f' % me_op.get() for me_name, me_op in zip(metric_dict['name'], metric_dict['op'])} progress_bar.set_postfix(loss='%.3f' % float(loss), data_time='%.3f' % float(t_data_1 - t_data_0), net_time='%.3f' % float(t_net_1 - t_net_0), **kwargs) t_data_0 = time.time()
[docs]def main(): torch.backends.cudnn.benchmark = True cfg = global_config.cfg work_dir = adv_cfg.train_dir distributed = False if 'WORLD_SIZE' in os.environ: distributed = int(os.environ['WORLD_SIZE']) > 1 if distributed: torch.cuda.set_device(cfg.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') dist_print(datetime.datetime.now().strftime('[%Y/%m/%d %H:%M:%S]') + ' start training...') dist_print(cfg) assert cfg.backbone in ['18', '34', '50', '101', '152', '50next', '101next', '50wide', '101wide'] train_loader = get_train_loader(cfg.batch_size, cfg.data_root, cfg.griding_num, cfg.use_aux, distributed, cfg.num_lanes, cfg.train_gt) cls_num_per_lane = adv_cfg.cls_num_per_lane net = parsingNet(pretrained=True, backbone=cfg.backbone, cls_dim=(cfg.griding_num + 1, cls_num_per_lane, cfg.num_lanes), use_aux=cfg.use_aux).cuda() if distributed: net = torch.nn.parallel.DistributedDataParallel(net, device_ids=[args.local_rank]) optimizer = get_optimizer(net, cfg) if cfg.finetune is not None: dist_print('finetune from ', cfg.finetune) state_all = torch.load(cfg.finetune)['model'] state_clip = {} # only use backbone parameters for k, v in state_all.items(): if 'model' in k: state_clip[k] = v net.load_state_dict(state_clip, strict=False) if cfg.resume is not None: dist_print('==> Resume model from ' + cfg.resume) resume_dict = torch.load(cfg.resume, map_location='cpu') net.load_state_dict(resume_dict['model']) if 'optimizer' in resume_dict.keys(): optimizer.load_state_dict(resume_dict['optimizer']) resume_epoch = int(os.path.split(cfg.resume)[1][2:5]) + 1 else: resume_epoch = 0 scheduler = get_scheduler(optimizer, cfg, len(train_loader)) dist_print(len(train_loader)) metric_dict = get_metric_dict(cfg) loss_dict = get_loss_dict(cfg) logger = get_logger(work_dir, cfg) if cfg.on_train_copy_project_to_out_dir: cp_projects(work_dir) for epoch in range(resume_epoch, cfg.epoch): train(net, train_loader, loss_dict, optimizer, scheduler, logger, epoch, metric_dict, cfg.use_aux) save_model(net, optimizer, epoch, work_dir, distributed) logger.close()
if __name__ == "__main__": main()